鸡兔同笼最简单的公式(鸡兔同笼问题公式)

2022-10-23 12:06:28 0

鸡兔同笼最简单的公式(鸡兔同笼问题公式)

鸡兔同笼问题五种基本公式和例题讲解

【鸡兔问题公式】

1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

目录

1总述2假设法3方程法一元一次方程二元一次方程

4抬腿法5列表法6详解7详细解法

基本问题特殊算法习题

8鸡兔同笼公式

1总述

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔?

算这个有个最简单的算法。

(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数

9435×2÷2=12-兔子数(12=鸡数(23

解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再除以2就是兔子数。虽然现实中没人鸡兔同笼。

2假设法

假设全是鸡:2×35=70(只)

鸡脚比总脚数少:9470=24(只)

兔:24÷

鸡:3512=23(只)

假设法(通俗)

假设鸡和兔子都抬起一只脚,笼中站立的脚:

94-35=59(只)

然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)

3方程法

一元一次方程

解:设兔有x只,则鸡有只。

4x+2

解:设鸡有x只,则兔有(35-x)只。

2x+4

答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

二元一次方程

解:设鸡有x只,兔有y只。

x+y=35

2x+4y=94

x+y=35)×2=2x+2y=70

x=23(只)。

答:兔子有12只,鸡有23

4抬腿法

法一

假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

法二

假如鸡与兔子都抬起两只脚,还剩下9435×2=24只脚这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有3512=23只鸡

5列表法

腿数

鸡(只数)

兔(只数)

6详解

中国古代《孙子算经》共三卷,成书大约在公元5世纪。这本书浅显易懂,有许多有趣的算术题,比如鸡兔同笼问题:

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

题目中给出雉兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2222……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。

我们来总结一下这道题的解题思路:如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。

我们也可以采用列方程的办法:设兔子的数量为x,鸡的数量为y

那么:x+y=35那么4x+2y=94这个算方程解出后得出:兔子有12只,鸡有23只。

7详细解法

基本问题

"鸡兔同笼"是一类有名的中国古算题。最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路.

1有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只

解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。现在,地面上出现脚的总数的一半,·也就是

244÷2=122(只).

122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。因此从122减去总头数88,剩下的就是兔子头数

122-88=34(只),

34只兔子.当然鸡就有54只。

答:有兔子34,54只。

上面的计算,可以归结为下面算式:

总脚数÷2-总头数=兔子数.总头数-兔子数=鸡数

特殊算法

上面的解法是《孙子算经》中记载的。做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是42,4又是22.可是,当其他问题转化成这类问题时,"脚数"就不一定是42,上面的计算方法就行不通。因此,我们对这类问题给出一种一般解法.

还说例1.

如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了

88×4-244=108(只).

每只鸡比兔子少.

说明我们设想的88"兔子"中,有54只不是兔子。而是鸡.因此可以列出公式

鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).

当然,我们也可以设想88只都是"",那么共有脚2×88=176(只),比244只脚少了

244-176=68(只).

每只鸡比每只兔子少.

说明设想中的"",34只是兔子,也可以列出公式

兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).

上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数。

假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法".

现在,拿一个具体问题来试试上面的公式。

2红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元。问红,蓝铅笔各买几支?

解:以""作为钱的单位.我们设想,一种""11只脚,一种"兔子"19只脚,它们共有16个头,280只脚。

现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有

蓝笔数=.

红笔数=16-3=13(支).

答:买了13支红铅笔和3支蓝铅笔。

对于这类问题的计算,常常可以利用已知脚数的特殊性.2中的"脚数"1911之和是30.我们也可以设想16只中,8只是"兔子",8只是"",根据这一设想,脚数是

8×。

28040.

40÷。

就知道设想中的8""应少5只,也就是""数是3.

30×819×1611×16要容易计算些。利用已知数的特殊性,靠心算来完成计算.

实际上,可以任意设想一个方便的兔数或鸡数。例如,设想16只中,"兔数"10,"鸡数"6,就有脚数

19×10+11×6=256.

28024.

24÷,甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).

现在把甲打字的时间看成""头数,乙打字的时间看成""头数,总头数是7.""的脚数是5,""的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了。

根据前面的公式

""=和是78岁,兄弟的年龄和是17岁。四年后父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?

解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作""头数,弟的年龄看作""头数。25"总头数".86"总脚数".根据公式,兄的年龄是

.

1998年,兄年龄是

14-4=10(岁).

父年龄是

.

因此,当父的年龄是兄的年龄的3倍时,兄的年龄是

.

这是2003年。

答:公元2003年时,父年龄是兄年龄的3.

5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?

解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成"8条腿""6条腿"两种。利用公式就可以算出8条腿的

蜘蛛数=.

因此就知道6条腿的小虫共

18-5=13(只).

也就是蜻蜓和蝉共有13只,它们共有20对翅膀。再利用一次公式

蝉数=.

因此蜻蜓数是13-6=7(只).

答:有5只蜘蛛,7只蜻蜓,6只蝉。

6某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?

解:对2道,3道,4道题的人共有

52-7-6=39(人).

他们共做对

181-1×7-5×6=144(道).

由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人(.

答:做对4道题的有31人。

以例1为例有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

以简单的X方程计算的话,我们一般用设大数为X,那么也就是设兔为X,那么鸡的只数就是总数减去鸡的只数,即(88-X)只。

解:设兔为X只。则鸡为(88-X)只。

4X+2×88-X=244

上列的方程解释为:兔子的脚数加上鸡的脚数,就是共有的脚数。4X就是兔子的脚数,88-X)就是鸡的脚数。

4X+2×88-2X=244

2X+176=244

2X+176-176=244-176

2X=68

2X÷2=68÷2

X=34

即兔子为34只,总数是88只,则鸡:88-34=54只。

答:兔子有34只,鸡有54只。

习题一

1.龟鹤共有100个头,350只脚.龟,鹤各多少只

2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动。象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?

3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个

4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多。那么2元,5元,10元各有多少张?

5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16.甲先做了多少天

6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路,一段平路,一段下坡路和一段平路组成的;有的是由一段上坡路,一段下坡路和一段平路组成的。已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段?

7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张?

二、"两数之差"的问题

鸡兔同笼中的总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢

7买一些4分和8分的邮票,共花68角。已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?

解一:如果拿出408分的邮票,余下的邮票中8分与4分的张数就一样多.

这就知道,余下的邮票中,8分和4分的各有30张。

因此8分邮票有

40+30=70(张).

答:买了8分的邮票70张,4分的邮票30张。

也可以用任意假设一个数的办法.

解二:譬如,假设有204分,根据条件"8分比4分多40",那么应有608分。以""作为计算单位,此时邮票总值是

4×20+8×60=560.

680少,因此还要增加邮票。为了保持""40,每增加14分,就要增加18分,每种要增加的张数是

.

因此4分有20+10=30(张),8分有60+10=70(张).

8一项工程,如果全是晴天,15天可以完成。倘若下雨,雨天比晴天多3天,

工程要多少天才能完成

解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8.用上一例题解一的方法,晴天有

.

雨天是7+3=10天,总共

7+10=17(天).

答:这项工程17天完成。

请注意,如果把"雨天比晴天多3"去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个。这说明了例7,例8与上一节基本问题之间的关系.

总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢

9鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?

解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍。兔的只数是

.

鸡是100-38=62(只).

答:鸡62只,兔38只。

当然也可以去掉兔28÷4=7(只).兔的只数是

.

也可以用任意假设一个数的办法。

解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是

4×50-2×50=100,

28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是.

兔只数是50-12=38(只).

另外,还存在下面这样的问题:总头数换成"两数之差",总脚数也换成"两数之差".

10古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字。有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?

解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差

13×5×4+20=280(字).

每首字数相差7×4-5×4=8(字).

因此,七言绝句有280÷.

五言绝句有35+13=48(首).

答:五言绝句48首,七言绝句35首。

解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10.字数分别是20×23=460(字),28×10=280(字),五言绝句的字数,反而多了

460-280=180(字).与题目中"20"相差180+20=200(字).

说明假设诗的首数少了。为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加200÷8=25(首).五言绝句有23+25=48(首).

七言绝句有10+25=35(首).

在写出"鸡兔同笼"公式的时候,我们假设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样假设。现在来具体做一下,把列出的计算式子与"鸡兔同笼"公式对照一下,就会发现非常有趣的事.

7,假设都是8分邮票,4分邮票张数是

.

9,假设都是兔,鸡的只数是

.

10,假设都是五言绝句,七言绝句的首数是

.

首先,请读者先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢

当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事。

11有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?

解:如果没有破损,运费应是400元。但破损一只要减少1+0.2=1.2(元).因此破损只数是.

答:这次搬运中破损了17只玻璃瓶。

请你想一想,这是"鸡兔同笼"同一类型的问题吗

12有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对18分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?

解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是8×6-2×.

两次相差120-30=90(分).

比题目中条件相差10分,多了80分。说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分。两者两差数就可减少6+10=16(分).

.

因此第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).

第一次得分5×19-1×.

第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分).

如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分。比题目中条件"第一次得分多10",要少了6×9+10.因此,第二次答错题数是

·

第一次答错9-4=5(题).

第一次得分.

第二次得分.

习题二

1.买语文书30本,数学书24本共花83.4元。每本语文书比每本数学书贵0.44元。每本语文书和数学书的价格各是多少

2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花的钱比乙茶叶所花钱少354元。问每种茶叶各买多少千克?

3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11.一连运了若干天,有晴天,也有雨天。其中雨天比晴天多3天,但运的次数却比晴天运的次数少27.问一连运了多少天

4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分。小华得了76.问小华做对了几道题?

5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分。每人各射10发,共命中14.结算分数时,甲比乙多10分。问甲,乙各中几发

6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地。已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回的途中相遇.如果小张速度比小王速度每小时多走1.5千米,求两人的速度。?

三、从""""

""""是两种东西,实际上还有三种或者更多种东西的类似问题.在第一节例5和例6就都有三种东西。从这两个例子的解法,也可以看出,要把"三种"转化成"二种"来考虑.这一节要通过一些例题,告诉大家两类转化的方法。

13学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300.其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支

解:从条件"铅笔数量是圆珠笔的4",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作

0.60×4+2.7)÷5=1.02(元).

现在转化成价格为1.026.3两种笔。用"鸡兔同笼"公式可算出,钢笔支数是

.

铅笔和圆珠笔共

232-12=220(支).

其中圆珠笔

220÷.

铅笔

220-44=176(支).

答:其中钢笔12支,圆珠笔44支,铅笔176支。

14商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元。张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个

解:因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍。我们设想买中球,小球钱中各出3.就可买2个中球,3个小球。因此,可以把这两种球看作一种,每个价钱是

.

从公式可算出,大球个数是

.

买中,小球钱数各是

.

可买10个中球,15个小球。

答:买大球30个,中球10个,小球15.

13是从两种东西的个数之间倍数关系,例14是从两种东西的总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西的平均价,就把""转化成""了。

15是为例16作准备.

15某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少

解:去和回来走的距离一样多。这是我们考虑问题的前提.

平均速度=所行距离÷所用时间

去时走1千米,要用20分钟;回来时走1千米,要用10分钟。来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.

千万注意,平均速度不是两个速度的平均值:每小时走算作全程。去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米。现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是45.因此平路所用时间是.

单程平路行走时间是6÷2=3(小时).

从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是:

45-5×3=30(千米).

又是一个"鸡兔同笼"问题。从甲地至乙地,上坡行走的时间是:

.

行走路程是3×4=12(千米).

下坡行走的时间是7-4=3(小时).行走路程是6×3=18(千米).

答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米。

做两次"鸡兔同笼"的解法,也可以叫"两重鸡兔同笼问题".16是非常典型的例题。

17某种考试已举行了24次,共出了426.每次出的题数,有25题,或者16题,或者20题。那么,其中考25题的有多少次

解:如果每次都考16题,16×24=384,比42642道题.

每次考25道题,就要多25-16=9(道).

每次考20道题,就要多20-16=4(道).

就有

25题的次数+4×20题的次数=42.

请注意,442都是偶数,25题次数也必须是偶数,因此,考25题的次数是偶数,由9×6=5442大,考25题的次数,只能是0,2,4这三个数。由于42不能被4整除,04都不合适.只能是考25题有2次(考20题有6次).

答:其中考25题有2次。

1850位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元。这些同学共用了车费110元,问其中乘小巴的同学有多少位

解:由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍.

如果有30人乘电车,

110-1.2×30=74(元).

还余下50-30=20(人)都乘小巴钱也不够。说明假设的乘电车人数少了.

如果有40人乘电车

110-1.2×40=62(元).

还余下50-40=10(人)都乘地下铁路前往,钱还有多,其中2分钱数占2×4=8(份),5分钱数占5份。

42元与5元各20张,10元有10.

2元与5元的张数之和是

.

5.甲先做了4天。

提示:把这件工程设为36份,甲每天做3份,乙每天做2.

6.第一种路段有14段,第二种路段有11段。

第一种路段全长13千米,第二种路段全长9千米,全赛程281千米,共25段,是标准的"鸡兔同笼".

7.最多可买1角邮票6张。

假设都买4分邮票,共用4×15=60(分),就多余100-60=40(分).买一张1角邮票,可以认为4分换1角,要多6分。40÷6=6……4,最多买6.最后多余4分,加在一张4分邮票上,恰好买一张8分邮票。

习题二

1.语文书1.74元,数学书1.30元。

设想语文书每本便宜0.44元,因此数学书的单价是

3.一连运了27天。

晴天数=

4.小华做对了16.

76分比满分100分少24分。做错一题少6分,不做少5.24分只能是6×4.

5.甲中8发,乙中6发。

假设甲中10发,乙就中14-10=4(发).甲得4×10=40(分),乙得5×4-3×6=2(分).比题目条件"甲比乙多10"相差,甲少中1发,少4+2=6(分),乙可增5+3=8(分).

28÷.

习题三

1295

解:每2.52分可换15分,即每换15分,个数就减少1.5个。已知减少了100-79=21个,所以换成的5分的个数=21÷1.5=14个。也就是说,是用5×14=70分钱换成了5分,所以2分币是70÷2=35个。同理,每51分可换15分,即每换15分,个数就减少4个。已知减少了79-63=16个,所以换成的5分的个数=16÷4=4个。也就是说,用5×4=20分换成了5分,所以1分币是20÷1=20个。原有2分及5分硬币共价值:35×2+45×5=295分。

8鸡兔同笼公式

公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数

总只数-兔的只数=鸡的只数

公式3:总脚数÷2—总头数=兔的只数

总只数兔的只数=鸡的只数

公式4:鸡的只数=÷2兔的只数=鸡兔总只数-鸡的只数

公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔总只数-兔总只数

公式6:(头数x4-实际脚数)÷2=

公式74×+2(总数-x=总脚数x=兔,总数-x=鸡数,用于方程)

公式8:鸡的只数:兔子的只数=兔子的脚数-(总脚数÷总只数):(总脚数÷总只数)-鸡的脚数

✎本文编辑:颜老师

✎来源:网络

✎声明:如有侵权,请及时与我们联系,如有转载,请联系并注明原出处。返回搜狐,查看更多

关键字:  鸡兔同笼最简单的公式  鸡兔同笼问题公式  鸡兔同笼的公式