年龄识别相机在线,测试年龄的相机
学完本教程后,您将能够以相当高的精确度去自动预测静态图像文件和实时视频中的人物年龄。
然后,我们将分析我们所做的年龄预测工作的结果。
图1:在本教程中,我们使用OpenCV和预先训练的深度学习模型来预测给定人脸的年龄。
1.阶段1:检测输入图像/视频中的人脸
2.阶段2:提取人的面部(感兴趣区域,ROI),并通过年龄检测器的算法去预测人物的年龄
对于阶段1,能够为图片中的人脸生成边框的人脸检测器都是可用的,这些检测器包括但不限于Haar cascades,HOG+线性SVM,单杆检测器(SSD)等。
使用哪种人脸检测器取决于您的项目:
·Haar cascades速度很快,并且能够在嵌入式设备上实时运行,存在的问题是它们的准确度较低并且极易出现假阳性检测。
·HOG+线性SVM模型比Haar cascades更精确,但速度较慢。它们对遮挡(即部分面部可见)或视角变化(即面部的不同视图)的容错性也较低。
·基于深度学习的人脸检测器功能最为强大,它提供了最高的准确度,但比Haar cascades和HOG+线性SVM需要更多的计算资源。
在为您的应用选择人脸检测器时,请花点时间考虑您的项目需求——速度或准确性,哪个对您更加重要?我还建议对每个面部检测器进行一些试验,以便让这些结果来指导您做决定。
确定了脸部的边界框坐标(x,y)后,您首先提取面部ROI,而忽略图像(帧)的其余部分。这样做可以使年龄检测器仅将注意力放在人脸上,而不是图像中其他不相关的“噪点”。
然后将面部ROI传递给模型,从而得到实际的年龄预测。
年龄检测器的算法有很多,但是最受欢迎的是基于深度学习的年龄检测器——在本教程中,我们将使用这种基于深度学习的年龄检测器。
我们基于深度学习的年龄检测器模型
我们在这里使用的深度学习年龄检测器模型是Levi和Hassner在其2015年发表的《使用卷积神经网络进行年龄和性别分类》(https://talhassner.github.io/home/publication/2015_CVPR)中构建和训练的。
在这篇论文里,作者提出了一个类似AlexNet的简单体系,该体系总共学习了8个年龄段:
1 0-2
2 4-6
3 8-12
4 15-20
5 25-32
6 38-43
7 48-53
8 60-100
您可能会注意到这些年龄段是不连续的——这是有意而为的,因为用于训练模型的Adience数据集(https://talhassner.github.io/home/projects/Adience/Adience-data.html#agegender)定义了年龄段(我们将在下一节中介绍为什么这样做)。
在这篇文章中,我们将使用预先训练的年龄检测器模型。但是如果您有兴趣学习如何从头开始训练它,请务必阅读《用Python进行计算机视觉深度学习》(https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/),在那里我将向您展示如何训练。
我们为什么不将年龄预测看做回归问题?
图3:用深度学习进行年龄预测可以被归类为回归或分类问题。
您会在上面注意到,我们将年龄离散化为“不同的区间”,从而将年龄预测作为分类问题——为什么不将它看做回归问题(我们在房价预测教程中所使用的方法:https://www.pyimagesearch.com/2019/01/28/keras-regression-and-cnns/)?
从技术上讲,没有理由不能将年龄预测看做回归任务。甚至有一些模型可以通过回归来实现。
问题在于年龄预测本质上是主观的,并且仅基于容貌。
一个五十多岁的人一生中从未吸烟,出门总是擦防晒霜,而且每天都要护理皮肤。而一个三十多岁的人一天要抽很多烟,不擦防晒霜去从事体力劳动,并且没有适当的皮肤护理。这个五十岁的人很可能看起来比这个三十岁的人年轻。
而且不要忘记基因是衰老最重要的驱动因素——有些人就是比其他人衰老得慢。
例如,看看下面的Matthew Perry(在电视情景喜剧Friends中扮演Chandler Bing)的图片,并将它与Jennifer Aniston(扮演Rachel Green)的图片进行比较:
图4:许多名人和行业领袖努力使自己看起来更年轻。这对使用OpenCV深度学习进行年龄检测提出了挑战。
您能猜出Matthew Perry(50岁)实际上比Jennifer Aniston(51岁)小一岁吗?
除非您事先了解了关于这些演员的情况,否则我不会相信。
但另一方面,您能猜到这些演员在48-53岁吗?
我愿意打赌您可能有这个能力。
虽然人类天生不擅长预测年龄的准确值,但我们实际上在预测年龄段方面还是不错的。
当然,上面是一个示例。
Jennifer Aniston的基因近乎完美,再加上有非常优秀的整形外科医生,她似乎青春不老。
但这印证了我的观点——人们有意掩饰自己的年龄。
而且,如果人类准确地预测一个人的年龄很困难的话,那么机器肯定也会同样困难。
一旦你将年龄预测看做回归问题,那么对于一个模型,要准确预测人的图像中的年龄值是极困难的。
但是,如果您将其视为分类问题,为模型定义了年龄段,那么我们的年龄预测模型将更容易训练,通常会比基于回归的预测提供更高的准确性。
简而言之:将年龄预测看做分类问题可以极大地“缓解”问题,使其更容易解决——通常我们不需要一个人的确切年龄;粗略的估计就足够了。
项目结构
请确保从本文的“下载”部分中获取代码,模型和图片。提取文件后,您的项目将如下所示:
前两个目录由年龄预测器和面部检测器组成。这两个深度学习模型都基于Caffe。
我提供了三张用于年龄预测的测试图片;您也可以添加自己的图片。
在本教程的其余部分,我们将讨论这两个Python脚本:
·detect_age.py:图片年龄预测
·detect_age_video.py:视频年龄预测
这些脚本都会检测图片/帧中的人脸,然后使用OpenCV对它们进行年龄预测。
运行我们的OpenCV图像年龄检测器
让我们开始在静态图像中使用OpenCV进行年龄检测。
在您的目录中打开detect_age.py文件,让我们开始工作:
为了启动我们的年龄检测器脚本,我们先导入NumPy和OpenCV。我建议查看我的pip install opencv教程(https://www.pyimagesearch.com/2018/09/19/pip-install-opencv/)来配置您的系统。
此外,我们需要导入Python内置的os模块,它可以添加模型所需的路径。
最后,我们导入argparse来解析命令行参数(https://www.pyimagesearch.com/2018/03/12/python-argparse-command-line-arguments/)。
我们的脚本需要四个命令行参数:
·--图片:提供为年龄检测输入图像的路径
·--人脸:为预先训练的面部检测器模型提供路径
·--年龄:预先训练的年龄探测器模型
·--置信度:最小概率阈值,以便筛除低置信检测
如上所述,我们的年龄检测器是一种分类器,可以根据预定义的年龄分段,通过人的面部ROI预测这个人的年龄——我们不会将其视为回归问题。现在让我们定义这些年龄段的bucket:
我们的年龄是在预先训练好的年龄检测器的bucket(即类别标签)中定义的。我们将使用此列表和相关的索引来获取年龄段,从而在输出的图像上进行注释。
完成了导入,命令行参数和年龄段的设置,我们现在就可以加载两个预先训练的模型:
在这里,我们加载两个模型:
·我们的人脸检测器可以找到并定位图片中的人脸(第25-28行)
·年龄分类器确定特定面孔所属的年龄范围(第32-34行)
这些模型均使用Caffe框架进行了训练。我在PyImageSearch Gurus课程(https://www.pyimagesearch.com/pyimagesearch-gurus/)中介绍了如何训练Caffe分类器。
现在我们已经完成了所有初始化,让我们从磁盘加载图像并检测面部ROI:
37-40行加载并预处理了我们输入的图像。我们使用OpenCV的blobFromImage方法——请在我的教程(https://www.pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/)中阅读有关blobFromImage的更多信息。
为了检测图片中的人脸,我们通过CNN传送blob,得到了detections的列表。现在让我们循环面部ROI的检测:
当我们循环detections时,我们清除了低置信度的面部(第51-55行)。
对于满足了最低置信度标准的面部,我们提取它们的ROI坐标(第58-63行)。现在,我们在仅包含单个面部的图像中有了小小收获。我们在第64-66行根据此ROI创建一个blob(即faceBlob)。
我们使用face blob进行年龄预测(第70-74行),从而得出年龄段和年龄的置信度。我们使用这些数据点以及面部ROI的坐标来注释最初输入的图片(第77-86行)并显示结果(第89和90行)。
在下一部分中,我们将分析结果。
让我们运行OpenCV年龄检测器。
首先,从本教程的“下载”部分下载源代码,预先训练的年龄检测器模型及示例图像。
从那里打开一个终端,然后执行以下命令:
在这里,您可以看到我们的OpenCV年龄检测器以57.51%的置信度预测了我的年龄为25-32岁——实际上,该年龄检测器是正确的(我拍摄这张照片时是30岁)。
让我们再举一个例子,这是著名演员Neil Patrick Harris小时候的照片:
图6:使用OpenCV进行年龄预测时,可以很确定地认为拍摄这张照片时的Neil Patrick Harris是8-12岁。
我们的年龄预测值又是正确的——拍摄这张照片时,Nat Patrick Harris看起来的确在8-12岁年龄段中的某个年龄。
让我们尝试另一张图片;这张图是Samuel L. Jackson,他是我最喜欢的演员之一:
图7:使用OpenCV通过深度学习进行年龄预测并不总是准确的,正如Samuel L. Jackson的照片所证明的那样。年龄预测只是一个软件,对人类来说是主观的。
这里我们的OpenCV年龄检测器出错了——Samuel L. Jackson大约71岁,这使我们的年龄预测大约有了18岁的偏差。
也就是说,仅仅看照片——Jackson先生看上去像71岁吗?
我的猜测应该是50到60岁左右。至少对我来说,他不像70岁多一点的男人。
但这恰恰印证了我在前文提出的观点:
用视觉进行年龄预测的过程很困难,当计算机或人试图猜测某人的年龄时,我认为这是主观的。
为了评估年龄检测器,您不能依赖人的实际年龄去评价。相反,您需要衡量预测年龄和感知年龄之间的准确度。
为实时视频运行我们的OpenCV年龄检测器
现在我们可以在静态图像中实现年龄检测,但实时视频可以吗?
我们可以这样做吗?
您应该猜我们可以。我们的视频脚本与图像脚本非常相似。不同之处在于,我们需要设置视频流并在每个帧上循环进行年龄检测。本文将重点介绍视频功能,因此请根据需要参考上面的流程。
我们需要导入三个新的模块:(1)VideoStream 。现在让我们进入这个程序:
我们的 detect_and_predict_age 辅助函数接受以下参数:
·frame:视频通过webcam获取的单个帧
·faceNet:初始化的深度学习人脸检测器
·ageNet:初始化的深度学习年龄分类器
这里的参数和我们的图片年龄检测器脚本的命令行参数是相似的。
我们的AGE_BUCKETS再次被定义(第12和13行)。
然后我们定义一个空列表来保存面部定位和年龄检测的结果。
第20-26行进行面部检测。
接下来,我们将处理每个detections:
请看29-43行——它们循环检测,以确保较高的置信度,然后提取出面部ROI。
第46-47行是新的——由于以下两个原因,我们要确保视频中的面部ROI足够大:
·首先,我们要筛掉帧中检测到的假阳性面部。
·其次,年龄分类结果对于远离相机的脸(即脸部很小)来说并不准确。
在这里,我们预测人脸的年龄并提取出年龄段和年龄置信度(第56-60行)。
第65-68行在一个字典中存储面部定位和年龄预测。循环检测的最后一步是将该字典放到结果列表中(第69行)。
如果所有检测都已经完成,并且结果都得到了,那我们将结果返回给调用者。
定义好辅助函数后,现在我们可以继续处理视频了。但我们需要先定义命令行参数:
我们的脚本需要三个命令行参数:
·--face:预先训练的面部检测器模型的目录的路径
·--age:预先训练的年龄检测器模型的目录
·--confidence:最小概率阈值,以便筛除低置信检测
在这里,我们将加载模型并初始化视频:
第86-89行加载并初始化了我们的面部检测器,而第93-95行加载了年龄检测器。
然后,我们使用VideoStream类来初始化webcam(第99和100行)。
webcam准备好后,我们将开始处理帧:
在上面的循环中,我们:
·获取帧,并将其调整为已知宽度(第106和107行)
·通过我们的detect_and_predict_age便捷函数传递帧,以便(1)检测面部(2)确定年龄(第111和112行)
·在帧上注释结果(第115-124行)
·显示和捕获键盘输入(第127和128行)
·如果键入q,那么退出并清空(第131-136行)
在下一节中,我们将启动年龄检测器,看看它是否有效!
使用OpenCV进行实时年龄检测的结果
现在,让我们将OpenCV年龄检测器应用于实时视频。
确保您已从本教程的“下载”部分下载源代码和预先训练的年龄检测器。
从那里打开一个终端,然后输入以下命令:
在这里,您可以看到OpenCV年龄检测器将我的年龄范围准确地预测为25-32岁(在写本文时,我还是31岁)。
如何改善年龄预测结果?
由Levi和Hassner训练的年龄预测模型的问题之一是,它严重偏向25-32岁年龄组,如他们原始版本(https://talhassner.github.io/home/projects/cnn_agegender/CVPR2015_CNN_AgeGenderEstimation.pdf)中的这个混淆矩阵表所示:
图8:Levi和Hassner的深度学习年龄检测模型严重偏向25-32岁年龄段。为了在您的模型中解决此问题,请考虑收集更多的训练数据,使用类权重、数据扩充和正则化技术。(图片来源https://talhassner.github.io/home/projects/cnn_agegender/CVPR2015_CNN_AgeGenderEstimation.pdf)
不幸的是,这意味着我们的模型预测的25-32岁结果可能实际上属于其他的年龄段——我在分析本教程的结果以及我自己的年龄预测中也遇到了几次这样的情况。
您可以通过以下方法消除这种偏差:
1 收集其他年龄段的额外训练数据以帮助平衡数据集
2 使用类权重来处理类失衡的问题
3 注意数据扩充
4 训练模型时使用正则化
其次,年龄预测结果可以通过使用人脸对齐(https://www.pyimagesearch.com/2017/05/22/face-alignment-with-opencv-and-python/)来改善。
为简单起见,我们在本教程中没有使用人脸对齐功能,但是您可以按照这个教程(https://www.pyimagesearch.com/2017/05/22/face-alignment-with-opencv-and-python/)学习有关人脸对齐的更多信息,然后将其应用于自己的年龄预测程序中。
性别预测呢?
我特意选择不在本教程中介绍性别预测。
某人在视觉上看上去怎样,穿着什么或如何表现,这些都并不意味着他们可能是某种(或其他)性别。
总结
为此,我们利用了Levi和Hassner在2015年出版的《使用卷积神经网络进行年龄和性别分类》中的预训练模型。该模型使我们能够以相当高的准确度去预测八个不同的年龄段;但是,我们必须认识到年龄预测是一个很有挑战性的问题。
有很多因素可以决定一个人的视觉年龄,包括他们的生活方式,工作,吸烟习惯,最重要的是基因。其次,请记住,人们试图掩饰自己的年龄——如果人类准确地预测某人的年龄有困难的话,那么机器学习模型同样会有困难。
希望您喜欢本教程!
要从本文中下载源代码(包括预先训练的年龄检测器模型),只需在下面的表格(https://app.monstercampaigns.com/c/tortsem7qkvyuxc4cyfi)中输入您的电子邮件地址即可!